3月14日の宿題

問題

1 展開せよ。
(1)(x+4)3
(2)(x3)3
(3)(2a+b)3
(4)(4x5y)3

2 展開せよ。
(1)(x+5)(x25x+25)
(2)(3a1)(9a2+3a+1)
(3)(x+4y)(x24xy+16y2)
(4)(2a5b)(4a2+10ab+25b2)

3 因数分解せよ。
(1)x3+8
(2)x327a3
(3)125x3+64y3
(4)40a3135b3

4 因数分解せよ。
(1)x664
(2)a626a327
(3)(x+y)3+z3

5 展開せよ
(1)(2a+b)2(4a22ab+b2)2
(2)(x+3)(x3)(x4+9x2+81)
(3)(x+y)(x2y)(x2xy+y2)(x2+2xy+4y2)

6 因数分解せよ
(1)x36x2+12x8
(2)8x3+6x2+3x+1
(3)64a3240a2b+300ab2125b3

答え

1 展開せよ。
(1)(x+4)3
=3C0x340+3C1x241+3C2x142+3C3x043
=1x31+31!x24+322!x16+3213!164
=x3+12x2+48x+64

(2)(x3)3
=3C0x3(3)0+3C1x2(3)1+3C2x1(3)2+3C3x0(3)3
=1x31+31!x2(3)+322!x9+3213!1(27)
=x39x2+27x27

(3)(2a+b)3
=3C0(2a)3(b)0+3C1(2a)2(b)1+3C2(2a)1(b)2+3C3(2a)0(b)3
=1(2a)31+31!(2a)2b+322!2ab2+3213!1b3
=8a3+12a2b+6ab2+b3

(4)(4x5y)3
=3C0(4x)3(5y)0+3C1(4x)2(5y)1+3C2(4x)1(5y)2+3C3(4x)0(5y)3
=1(4x)31+31!(4x)2(5y)+322!4x25y2+3213!1(125)y3
=64x3240x2y+300xy2125y3

2 展開せよ。
(1)(x+5)(x25x+25)
=x3+53
=x3+125

(2)(3a1)(9a2+3a+1)
=(3a)313
=27a31

(3)(x+4y)(x24xy+16y2)
=x3+(4y)3
=x3+64y3

(4)(2a5b)(4a2+10ab+25b2)
=(2a)3(5b)3
=8a3125b3

3 因数分解せよ。
(1)x3+8
=(x+2)(x22x+4)

(2)x327a3
=(x3a)(x2+3ax+9a2)

(3)125x3+64y3
=(5x+4y)(25x220xy+16y2)

(4)40a3135b3
=5(8a327b3)
=5(2a3b)(4a2+6ab+9b2)

4 因数分解せよ。
(1)x664
=(x2)343
=(x24)(x4+4x2+16)
=(x2)(x+2){(x2+4)24x2}
=(x2)(x+2)(x22x+4)(x2+2x+4)

(2)a626a327
=(a3)226a327
=(a327)(a3+1)
=(a3)(a+1)(a2+3a+9)(a2a+1)

(3)(x+y)3+z3
={(x+y)+z}{(x+y)2(x+y)z+z2}
=(x+y+z)(x2+y2+z2+2xyyzzx)

5 展開せよ
(1)(2a+b)2(4a22ab+b2)2
=(8a3+b3)2
=64a6+16a3b3+b6

(2)(x+3)(x3)(x4+9x2+81)
=(x29)(x4+9x2+81)
=x6729

(3)(x+y)(x2y)(x2xy+y2)(x2+2xy+4y2)
=(x+y)(x2xy+y2)(x2y)(x2+2xy+4y2)
=(x3+y3)(x38y3)
=x67x3y38y6

6 因数分解せよ
(1)x36x2+12x8
=(x38)(6x212x)
=(x2)(x2+2x+4)6x(x2)
=(x2)(x24x+4)
=(x2)(x2)2
=(x2)3

(2)8x3+6x2+3x+1
=(8x3+1)+(6x2+3x)
=(2x+1)(4x22x+1)+3x(2x+1)
=(2x+1)(4x2+x+1)

(3)64a3240a2b+300ab2125b3
=(4a5b)3

---------------------------------

問題

1 展開せよ。
(1)(x+4)3
(2)(x3)3
(3)(2a+b)3
(4)(4x5y)3

2 展開せよ。
(1)(x+5)(x25x+25)
(2)(3a1)(9a2+3a+1)
(3)(x+4y)(x24xy+16y2)
(4)(2a5b)(4a2+10ab+25b2)

3 因数分解せよ。
(1)x3+8
(2)x327a3
(3)125x3+64y3
(4)40a3135b3

4 因数分解せよ。
(1)x664
(2)a626a327
(3)(x+y)3+z3

5 展開せよ
(1)(2a+b)2(4a22ab+b2)2
(2)(x+3)(x3)(x4+9x2+81)
(3)(x+y)(x2y)(x2xy+y2)(x2+2xy+4y2)

6 因数分解せよ
(1)x36x2+12x8
(2)8x3+6x2+3x+1
(3)64a3240a2b+300ab2125b3

答え

1 展開せよ。
(1)(x+4)3
=3C0x340+3C1x241+3C2x142+3C3x043
=1x31+31!x24+322!x16+3213!164
=x3+12x2+48x+64

(2)(x3)3
=3C0x3(3)0+3C1x2(3)1+3C2x1(3)2+3C3x0(3)3
=1x31+31!x2(3)+322!x9+3213!1(27)
=x39x2+27x27

(3)(2a+b)3
=3C0(2a)3(b)0+3C1(2a)2(b)1+3C2(2a)1(b)2+3C3(2a)0(b)3
=1(2a)31+31!(2a)2b+322!2ab2+3213!1b3
=8a3+12a2b+6ab2+b3

(4)(4x5y)3
=3C0(4x)3(5y)0+3C1(4x)2(5y)1+3C2(4x)1(5y)2+3C3(4x)0(5y)3
=1(4x)31+31!(4x)2(5y)+322!4x25y2+3213!1(125)y3
=64x3240x2y+300xy2125y3

2 展開せよ。
(1)(x+5)(x25x+25)
=x3+53
=x3+125

(2)(3a1)(9a2+3a+1)
=(3a)313
=27a31

(3)(x+4y)(x24xy+16y2)
=x3+(4y)3
=x3+64y3

(4)(2a5b)(4a2+10ab+25b2)
=(2a)3(5b)3
=8a3125b3

3 因数分解せよ。
(1)x3+8
=(x+2)(x22x+4)

(2)x327a3
=(x3a)(x2+3ax+9a2)

(3)125x3+64y3
=(5x+4y)(25x220xy+16y2)

(4)40a3135b3
=5(8a327b3)
=5(2a3b)(4a2+6ab+9b2)

4 因数分解せよ。
(1)x664
=(x2)343
=(x24)(x4+4x2+16)
=(x2)(x+2){(x2+4)24x2}
=(x2)(x+2)(x22x+4)(x2+2x+4)

(2)a626a327
=(a3)226a327
=(a327)(a3+1)
=(a3)(a+1)(a2+3a+9)(a2a+1)

(3)(x+y)3+z3
={(x+y)+z}{(x+y)2(x+y)z+z2}
=(x+y+z)(x2+y2+z2+2xyyzzx)

5 展開せよ
(1)(2a+b)2(4a22ab+b2)2
=(8a3+b3)2
=64a6+16a3b3+b6

(2)(x+3)(x3)(x4+9x2+81)
=(x29)(x4+9x2+81)
=x6729

(3)(x+y)(x2y)(x2xy+y2)(x2+2xy+4y2)
=(x+y)(x2xy+y2)(x2y)(x2+2xy+4y2)
=(x3+y3)(x38y3)
=x67x3y38y6

6 因数分解せよ
(1)x36x2+12x8
=(x38)(6x212x)
=(x2)(x2+2x+4)6x(x2)
=(x2)(x24x+4)
=(x2)(x2)2
=(x2)3

(2)8x3+6x2+3x+1
=(8x3+1)+(6x2+3x)
=(2x+1)(4x22x+1)+3x(2x+1)
=(2x+1)(4x2+x+1)

(3)64a3240a2b+300ab2125b3
=(4a5b)3